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Abstract

Main conclusion Metabolites in Rafflesia-infected and non-infected Tetrastigma were compared which may have
applications in Rafflesia propagation. Benzylisoquinoline alkaloids, here reported for the first time in Vitaceae, were
abundant in non-infected shoots and may be a form of defense. In Rafflesia-infected shoots, oxylipins, which mediate
immune response, were elevated.

Abstract Endemic to the forests of Southeast Asia, Rafflesia (Rafflesiaceae) is a genus of holoparasitic plants producing the
largest flowers in the world, yet completely dependent on its host, the tropical grape vine, Tetrastigma. Rafflesia species are
threatened with extinction, making them an iconic symbol of plant conservation. Thus far, propagation has proved challeng-
ing, greatly decreasing efficacy of conservation efforts. This study compared the metabolites in the shoots of Rafflesia-infected
and non-infected Tetrastigma loheri to examine how Rafflesia infection affects host metabolomics and elucidate the Rafflesia
infection process. Results from LC-MS-based untargeted metabolomics analysis showed benzylisoquinoline alkaloids were
naturally more abundant in non-infected shoots and are here reported for the first time in the genus 7etrastigma, and in the
grape family, Vitaceae. These metabolites have been implicated in plant defense mechanisms and may prevent a Rafflesia
infection. In Rafflesia-infected shoots, oxygenated fatty acids, or oxylipins, and a flavonoid, previously shown involved in
plant immune response, were significantly elevated. This study provides a preliminary assessment of metabolites that differ
between Rafflesia-infected and non-infected Tetrastigma hosts and may have applications in Rafflesia propagation to meet
conservation goals.
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Rafflesia (Rafflesiaceae, Malpighiales) is a genus of plants
producing the world’s largest flowers (Fig. 1), yet it is a holo-
parasite with no stems, roots or leaves, deriving all nutrients
Communicated by Dorothea Bartels. solely from its host vine, the genus Tetrastigma (Vitaceae;
Nais 2001; Davis et al. 2007). Ironically, the giant-flowered
Rafflesia produces minuscule threadlike endophytes inter-
spersed within the vascular tissue of its host (Nikolov et al.
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Fig.1 Blooming flower of R. lagascae Blanco, the Rafflesia spe-
cies infecting 7. loheri Gagnep. (Mt Guinatungan, Camarines Norte,
Philippines). This is one of the smaller Rafflesia species, at 20 cm,
with the largest (R. arnoldii R.Br.) growing up to a meter. Photo by
J. Molina

2014; Wicaksono et al. 2020). Dubbed the “panda of the
plant world” for its charismatic characteristics, Rafflesia has
ca. 30 species that are unique to the tropics of Southeast Asia
with many endangered of extinction (Barcelona et al. 2009;
Wicaksono et al. 2016). Unfortunately, efforts to propagate
Philippine Rafflesia for ex situ conservation have had only
incremental success (Molina et al. 2017). Molina and collab-
orators have been transporting Rafflesia-infected Tetrastigma
cuttings from the Philippines for propagation at the United
States Botanic Garden (USBG) in Washington, D.C. since
2015. The cuttings have rooted and survived for a maximum
of 11 months, but no shoots have been produced.

Since Indonesia’s Bogor Botanic Garden achieved blooms
grafting Rafflesia-infected Tetrastigma to a Tetrastigma root-
stock (Mursidawati et al. 2015; Wicaksono et al. 2016), this
technique was replicated at the USBG. Unfortunately, the
scion did not survive past 33 days. However, transported
uninfected Tetrastigma cf. magnum Merr. and Tetrastigma
harmandii Planch. seedlings survived at the USBG (Molina
et al. 2017) and resulting mature plants have been repeatedly
inoculated with R. speciosa seeds since Oct. 2017, but the
emergence of Rafflesia buds has yet to be observed.

In holoparasitic Orobanchaceae, which includes Striga
and other agricultural pests, a class of chemicals known as
strigolactones produced by their host plants have been found
to induce the parasitic plant’s seed germination (Runyon
et al. 2009; Smith et al. 2014). After germination, the Striga
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radicle grows toward host roots and forms a haustorium
that allows the parasite to attach and obtain nutrients from
the host. The haustorium is induced by host-derived small
molecules (Albrecht et al. 1999; Saucet and Shirasu 2016)
called haustorium-inducing factors (HIF) with 2,6-dimeth-
oxy-p-benzoquinone (DMBQ) as the most active HIF for
Striga (Wada et al. 2019). To determine if strigolactones
also induce Rafflesia seed germination, Molina et al. (2017)
incubated R. speciosa Barcelona & Fernando seeds in GR24,
a synthetic version of strigol. Other plant growth regulators
were also investigated. However, none were able to stimulate
Rafflesia seed germination (Molina et al. 2017). It is still
unknown what host metabolites could facilitate a Rafflesia
infection (Wicaksono et al. 2020), which is proving highly
detrimental to conservation efforts.

There are limited studies on the chemical ecology of plant
parasite—host interactions (Wink and Witte 1993; Loveys
et al. 2001; Lozano-Baena et al. 2007; Runyon et al. 2009;
Smith et al. 2009; Clarke et al. 2019; Furlan et al. 2019;
Mutuku et al. 2020; Piwowarczyk et al. 2020). Since these
interactions are metabolically diverse, involving two spe-
cies of plants that may share biochemical characteristics
(Lozano-Baena et al. 2007), chemical analysis is difficult
(Allwood et al. 2008). Most studies of plant parasite—host
interaction are on the parasitic taxa of Orobanchaceae and
Cuscuta (Convolvulaceae) (Clarke et al. 2019; Mutuku et al.
2020). As agricultural pests, there has been a drive to under-
stand their chemical ecology, such as germination stimulants
(Runyon et al. 2009), to mitigate the economic impact of
crop loss from these plant parasites. Other studies of these
taxa (Lozano-Baena et al. 2007; Furlan et al. 2019) have
examined the chemistry of host resistance to infection and
determined that accumulation of phenolic compounds are
toxic and suppressive to the parasite. An interplay between
salicylates and jasmonates has also been shown to underlie
effective plant defenses against insect herbivores, pathogens,
and parasitic plants (Smith et al. 2009). Furlan et al. (2019)
examined polyphenol content, which has also been impli-
cated in plant defense, between Tapirira guianensis Aubl.
trees (Anacardiaceae) parasitized and not parasitized by the
mistletoe Phoradendron perrottetii (DC.) Eichler (Santal-
aceae), noting that parasite-infected tissues have less tannin/
polyphenol content than healthy tissues.

In this study, we aimed to compare the metabolites in
Rafflesia-infected and non-infected Tetrastigma shoots to
understand how Rafflesia infection affects host metabo-
lomics. To our knowledge, this is the first study of its kind.
A previous study of metabolites of Tetrastigma hemsley-
anum Diels & Gilg, a medicinal Chinese plant, but not a
host of Rafflesia, identified constituent flavonoids, anth-
raquinones, esters, fatty acids, phenols, and catechins (Ding
et al. 2019). Another T. hemsleyanum study elucidated the
regulatory network of anthocyanin biosynthesis including
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metabolites involved in flavonoid biosynthesis and tryp-
tophan metabolism, as well as alkaloids derived from the
shikimate pathway (Yan et al. 2020). Because liquid chro-
matography—mass spectrometry (LC—MS)-based untargeted
metabolomics has proven to be a quick, selective and highly
sensitive method of analysis for a wide range of non-vola-
tile metabolites (Commisso et al. 2013; Sargent 2013), we
performed LC-MS to compare non-parasitized Tetrastigma
shoots with infected shoots, to elucidate differences in host
chemistry that could identify compounds useful in facilitat-
ing Rafflesia infection, and consequently, provide a new tool
for conservation efforts.

Materials and methods

Cuttings of Rafflesia lagascae-infected Tetrastigma loheri
Gagnep. and non-infected shoots were collected from San
Lorenzo Ruiz Municipality, Mt. Guinatungan, Camarines
Norte, Philippines, with permission from Mayor Nelson de
Leon in May 2017 and in Aug 2018 (with Gratuitous permit
no. 257 and 275 from the Philippine Biodiversity Manage-
ment Bureau). The non-infected cuttings were taken from
sufficiently mature woody host vines that did not have any
visible sign of Rafflesia infection (i.e. Rafflesia floral buds/
scars absent), but mature enough that they could presumably
support an infection, since Rafflesia has never been observed
to infect juvenile vines. Our guide Ani Malate, who lived
within the vicinity, has been tasked by the local government
to regularly monitor Rafflesia populations for in situ con-
servation purposes, and is thoroughly experienced in deter-
mining which Tetrastigma plants were Rafflesia-infected.
However, we were limited in sampling to ensure continued
natural propagation of the Rafflesia and Tetrastigma popula-
tions and because of physical challenges in accessing various
populations interspersed on mountainous terrain.

Samples were kept viable in moist sphagnum moss for
about a week after collection during inspections and courier
transport to USBG in Washington, DC (with USDA import
permit P526P-18-02,136). Upon arrival at USBG, samples
were placed in — 80 °C freezer until methanol extraction at
LIU-Brooklyn (shipped from USBG overnight in dry ice).
Samples from the cuttings were DNA-barcoded to determine
the species of Tetrastigma following methods described pre-
viously (Molina et al. 2018).

Sections within ca. 5 cm of a Rafflesia bud, as well as
comparable sections from non-infected cuttings (3 individu-
als for each type of cutting), were subjected to independent
liquid chromatography mass spectrometry (LC-MS) experi-
ments for confirmatory analyses, conducted at two differ-
ent institutions: University of Illinois-Chicago College of
Pharmacy (UIC) and the Advanced Science Research Center
(ASRC) of the City University of New York. To control

for differences due to sampling, comparable samples (i.e.,
same-age shoots) from infected and uninfected shoots were
obtained. In both LC-MS runs, samples were first extracted
in methanol (25 mg ground in 700 pL methanol) in July
2017 and in Nov 2018 following field collection. The
extracts were evaporated to dryness under a gentle stream
of nitrogen and then transported to UIC (July 2017, one set
of infected and uninfected samples) and ASRC (Nov 2018,
two sets of infected and uninfected samples). Samples were
prepared for injection by reconstituting in 0.3 mL (v/v) of
1:1 (v/v) MeOH/water.

At UIC, samples were then analyzed using LC-MS with
YMC AQ reverse phase column 2 X 100 mm, 3 um) and a
Waters SYNAPT quadrupole/time-of-flight mass spectrom-
eter operated in positive ion electrospray mode. A linear
gradient was used from 10 to 90% acetonitrile in aqueous
formic acid over 30 min at a flow rate of 0.2 mL/min (col-
umn temperature 30 °C) with an injection volume of 5 pL.
The mass spectrometric data were collected over the range
m/z 120-900.

At ASRC, samples were analyzed using a Bruker Dal-
tonics maXis-II UHR-ESI-QqTOF mass spectrometer cou-
pled to a Thermo Scientific Ultimate-3000 UHPLC system.
Up to 20 uL were injected onto an Agilent Acclaim 120
C,g-column (2.1 mm X 100 mm, 5 um) at 30 °C with a flow
rate of 200 uL/min. The gradient used was 0—1 min 7% sol-
vent B (acetonitrile, 0.15% formic acid) and 93% solvent A
(water, 0.15% formic acid) followed by a gradient 7-35% B
from 1 to 15 min, 35-95% B from 15 to 28 min, then held
at 95% B from 28 to 31 min. All experimental data were
acquired over the range m/z 50-1500 using positive ion elec-
trospray. The raw data were analyzed using the online ver-
sion of XCMS metabolomics software (version 1.10.9; Taut-
enhahn et al. 2012). XCMS has been developed to facilitate
an efficient workflow for untargeted metabolomics, which in
contrast to targeted metabolomics, measures as many metab-
olites in the sample as possible. XCMS integrates metabolite
profiling and identification in one step, including peak detec-
tion, retention time correction, chromatogram alignment and
quantification (Benton et al. 2015). To analyze the data in
XCMS, we applied a pairwise comparison between infected
and non-infected samples with default parameters for Bruker
Q-TOF (ASRC) with “bio-source =plant”.

After XCMS analysis, the difference reports were filtered.
XCMS integrates METLIN’s high-resolution tandem mass
spectrometry (MS/MS) database, which includes 1 million
molecules including lipids, amino acids, carbohydrates, toxins,
small peptides, and natural products, among other classes (Gui-
jas et al. 2018). The features from XCMS with P value <0.05,
intensities above 20,000, and fold difference of at least 2.5,
were analyzed further in Bruker Compass Data Analysis v4.3
and Metfrag Web (Ruttkies et al. 2016; https://msbi.ipb-halle.
de/MetFragBeta/) to identify metabolites of interest. These
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parameters may be arbitrary but careful inspection of aligned
peaks showed that these settings clearly distinguished the two
groups providing a preliminary assessment of compounds that
strongly differed between infected and non-infected hosts. We
manually inspected each feature that passed our settings. Those
that did not show a pronounced peak difference between the
aligned extracted ion chromatograms (EIC) of features in
infected and uninfected samples and/or those that were not
annotated by METLIN were not included in further analysis.
The neutral molecular formula of the precursor ions
(desired features) and their MS/MS fragmentation spectra
were then obtained in Bruker Compass Data Analysis and
given as input in the MS/MS peak list in Metfrag. All other set-
tings were kept at default values. Candidate metabolites were
then retrieved with the highest scoring candidates subjected to
additional analysis in CFM-ID (Allen et al. 2014; http://cfmid.
wishartlab.com/) to confirm Metfrag candidates. Metfrag and
CFM-ID are silico fragmentation tools that utilize known com-
pounds from structure databases to calculate fragments that
are matched to experimentally obtained spectra (BlaZzenovic¢
et al. 2018). In addition to these automated approaches, we
have also performed a manual dereplication approach on the
data obtained from UIC to compare and verify the metabolites
of interest from ASRC, as described in previous publications
(Godecke et al. 2009; Nikoli¢ et al. 2012, 2015, 2017), some
of which contain extensive analysis of fragmentation spectra of
benzylisoquinoline alkaloids (BIA). Tandem mass spectra of
BIAs and other metabolites identified in this study were com-
pared to those stored in our in-house library and public data-
bases (MoNA, Horai et al. 2010; GNPS, Wang et al. 2016).

Data availability

Experimental data from this study are publicly available
in NIH Common Fund's National Metabolomics Data
Repository (NMDR) website, the Metabolomics Workbench,
https://www.metabolomicsworkbench.org, where it has been
assigned Project ID PR0O01169. The data can be accessed
directly via Project https://doi.org/10.21228/M8M40V Our
data can also be accessed in XCMS including analyses to
visualize extracted ion chromatograms (EIC), mass spec-
tra, values of fold change, etc. of relevant features listed in
Tables 1 and 2 upon request from corresponding author. In
addition, quantitative aspects (fold-change, P values, etc.)
and corresponding EIC of relevant features presented in
Tables S1 and S2 are available in the Supplement.

Results
DNA testing confirmed that 5 of 6 cuttings sampled were

Tetrastigma loheri. One uninfected cutting was found to be
T. papillosum (Blume) Planch., and LC-MS raw data for
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this sample were excluded from further analysis to rule out
interspecific differences in metabolites. 7. loheri is one of
the six known Rafflesia host species in the Philippines (Pel-
ser et al. 2019).

XCMS analysis yielded 14,457 metabolites/features
within the range of retention time 0-35 min. Upon filter-
ing the LC-MS data, there were 422 (out of 14,457) fea-
tures with P values <0.05, intensities above 20,000, and at
least 2.5-fold difference between infected and non-infected
T. loheri. These settings clearly distinguished the aligned
peaks of the two groups providing a preliminary assessment
of significantly different metabolites.

Out of the 422 metabolites initially screened, a total of 18
could be further analyzed in Bruker Compass Data analysis,
Metfrag and CFM-ID. Metabolites that did not show puta-
tive identification in METLIN were excluded. Tables 1 and
2 present metabolites significantly different between infected
and non-infected hosts in both LC-MS runs. Since we per-
formed two independent LC-MS analyses of the same sam-
ples, we are confident in the detection of these compounds.
However, given our limited sampling and the XCMS filters
we applied, there may be other compounds we may have
missed, and our results are, therefore, preliminary.

Nine metabolites belonging to the class of benzylisoqui-
noline alkaloids were found to be significantly and naturally
abundant in the non-infected T. loheri cuttings (Table 1).
Identification of BIAs was based on the comparison with
authentic standards, searches of public and in-house spectral
databases and extensive prior knowledge on the fragmenta-
tion patterns of these compounds as described in several
publications most notably those by Qing et al. (2020) and
Menéndez-Perdomo et al. (2021). Figure 2 briefly summa-
rizes structurally significant fragment ions that can be used
to piece together a BIA molecule. Based on the masses of
these fragment ions and by comparison with those of the
known BIAs one can propose a reasonable structure of the
unknown BIAs. For example, ion ¢ representing loss of
nitrogen determines whether nitrogen is present as a sec-
ondary amine (loss of NHj), tertiary amine (loss of NH-Me)
or a quaternary amine (loss of N(CH3),). Quaternary amines
have an additional signature ion at m/z 58 corresponding to
the (CH;), N* =CH, fragment formed by retro Diels—Alder
fragmentation. Ion a on the other hand determines the sub-
stitution pattern on the benzyl side chain. For example, the
m/z 107 indicates p-OH substituent, while m/z 121 indicates
p-OMe substituent. The structural arguments used to anno-
tate a specific BIA are shown in Table 1.

On the other hand, eight metabolites were found to be sig-
nificantly elevated in the Rafflesia-infected host compared to
its non-infected counterpart (Table 2) including tryptamine,
desoxypeganine, a pthalide (possibly cnidilide/neocnidilide),
various kinds of polyunsaturated fatty acids (PUFA), and a
polyphenol.
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Table 1 Metabolites m/z Candidate ID Comments including confidence levels

significantly elevated in Formula

non-infected host. Comments Retention_time (Rt)

including confidence levels ?ggég Unknown Level 4

following Schymanski et al. RE1373 min

(2014) are provided 300.1588 N-norarmepavine Spectral interpretation (level 2b). Loss of
Ci3HyNO; NH; observed indicating no methyl groups
Rt 11.38 min on the nitrogen. m/z 107 present indicating

p-OHbenzyl t. m/z 189 is 14 units shifted
compared to N-methyl coclaurine
suggesting two OMe groups.

MeO O
NH
MeO
O OH

314.1382 Unknown BIA Level 3
CisHisNO4 Abundant loss of Me radical and CHa
Rt 8.37min indicated ortho OH, OMe substitution

pattern. Lack of abundant loss of ring
nitrogen suggest it is not a tetrahydro
isoquinoline. Formula fit and database
search point to a benzyl dehydro

isoquinoline
314.1387 Unknown BIA Level 3
CsH9NO4 Spectrum similar to that of the compound
Rt 10.64 min eluting at 8.37 min suggesting an isomeric
benzyl dehydroisoquinoline
328.1542 Unknown BIA Level 3
CisH;,NO, MS-MS spectrum similar to that of
Rt 10.38 min reticuline; possibly dehydroreticuline
328.1901 O-methyl magnocurarine MeO
Ci9H24NO3 O ~
Rt 12.72 min MeO R
CL,,
Spectral interpretation based on the
tandem mass spectrum of magnocurarine
(level 2b)
330.1692 Reticuline Standard (level 1)
Ci19H23NO4
Rt 9.79 min
342.1699 Magnoflorine Standard (level 1)
C20H24NQ4 OMe
Rt 11.92 min
di° O
a0
NG
/ \
358.2008 Quaternary BIA Level 3
C21H28NO4 Molecular formula and loss of
Rt 11.24 min dimethylamine point to a quaternary BIA.
Spectral info not sufficient for more
detailed structure proposal.
363.1797 Secoisolariciresinol Level2a
C20H2606 Spectral match
Rt 12.72 min
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Table 2 Metabolites m/z Candidate ID Comments including confidence levels
significantly elevated in infected Formula
host. Comments includir}g Retention time (RY)
confidence %evels following 144.0806 Tryptamine Level 2a
Schymanski et al. (2014) are CioHoN Spectral match
provided Rt 8.29 min
173. 1119 Desoxypeganine Proposed structure based on manual
C11Hi2N2 interpretation combined with databases searches
Rt 21.60 min of known compound with this formula
195.1375 Neocnidilide, cnidilide 0
C12Hi1302 XA
Rt 20.15 min P
Level 3. This is a reasonable structure proposed
based on comparison with the tandem mass
spectrum of ligustilide.
277.2155 Stearidonic acid Level 3
CisH2s302
Rt 20.15 min Lv\_/\_/v\_/\
HO — — = =
293.2104 9,10-EOT, 12-OPDA, Level 3
C1sH2503 etherolenic acid
Rt 19.28 min
295.2260 17-hydroxylinolenic acid, Level 3
Ci8H3003 13(s)-HOT/9Z,11E15Z)-
Rt 20.15 min (13S)-13-hydroxyoctadeca-
9,11,15-trienoic_acid
313.2365 (8E,108,122)-10- Level 3
C18H3204 hydroperoxyoctadeca-8,12-
Rt 20.15 min dienoate, (9Z,11F)-(13S)-
13-hydroperoxyoctadeca-
9,11-dienoic acid
743.2009 Quercetin-3-(2g- Level 3
C;5:H3505 xylosylrutinoside)
Rt 10.78 min
Discussion seeds were exposed to the synthetic strigol GR24 (Molina

We sought to determine which metabolites were signifi-
cantly different between Rafflesia-infected and non-infected
T. loheri to understand how Rafflesia infection affects host
metabolomics, to characterize these unique metabolites, as
well as assess their potential ecological roles to generate
insights that can facilitate a Rafflesia infection to aid in con-
servation efforts.

The Orobanchaceae germination stimulant strigol may
potentially be present in both infected and uninfected Tet-
rastigma (results not shown) but was not significantly dif-
ferent and, therefore, excluded in the filter. Similar lignin-
related compounds that stimulate haustoria in Phelipanche
and Striga (Orobanchaceae, Cui et al. 2018) were also
detected in a METLIN search implemented within XCMS,
in both Tetrastigma samples. However, it is unknown if
they are involved in any way in facilitating a Rafflesia
infection. The absence of germination when Rafflesia

@ Springer

et al. 2017) suggests that there remain unknown aspects of
Rafflesia’s germination ecology (Wicaksono et al. 2020).

There were 10 metabolites that were found to be more
abundant in non-infected 7. loheri (Table 1) compared to
8 metabolites in Rafflesia-infected shoots (Table 2). Those
with known ecophysiological roles in the literature are
discussed below. We reiterate that these are compounds
that passed our XCMS filters and manual dereplication
approach, and there could be other compounds signifi-
cantly different that have yet to be explored. Nonetheless,
our study provides a critical first assessment of compounds
that differed between infected and non-infected hosts so
we may begin to understand how Rafflesia infection affects
host metabolomics. It is possible that what we have deter-
mined to be “non-infected” hosts may be harboring dor-
mant Rafflesia infection (i.e., Rafflesia buds have not yet
emerged, Bascos et al. 2021), but given our local guide’s
expertise and experience in making this determination, and
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Fig.2 Summary of fragmentation pattern of BIAs. Fragmentation
scheme of BIAs used to identify compounds in this study. This sum-
marizes structurally significant fragment ions that can be used to
piece together a BIA molecule. Based on the masses of these frag-
ment ions and by comparison with those of the known BIAs one can
propose a reasonable structure of the unknown BIAs. For example,
ion c¢ representing loss of nitrogen determines whether nitrogen is
present as a secondary amine (loss of NH;), tertiary amine (loss of

the low chance of unwittingly selecting three “dormant”
samples, we are positive of the sampling, though addi-
tional sampling and analysis in the future would certainly
be advantageous.

Metabolites abundant in non-infected Tetrastigma
loheri

Benzylisoquinoline alkaloids (BIA) were significantly
detected in non-infected 7. loheri compared to infected
shoots. BIAs are a diverse group of about 2,500 alkaloids
that include pharmacologically important drugs such as
codeine, morphine, tubocurarine, naturally produced in
basal angiosperms (magnoliids including Annonaceae,
Lauraceae and Piperales), as well as in the phylogenetically
distant angiosperm order Ranunculales and infrequently, in
the families Rutaceae, Cornaceae and Nelumbonaceae (Lis-
combe et al. 2005; Bonamore et al. 2010). BIA biosynthesis
may have evolved as a mechanism for plant defense against
herbivores and may have originated early on in angiosperm
evolution, but its limited occurrence among angiosperms
suggests the need for a “highly specialized cellular platform
to activate the pathway in divergent taxa” (Liscombe et al.
2005: 2500). BIA is said to be absent in Eudicots (Cole
et al. 2019), but our results imply that BIA may be sporadi-
cally present in eudicots and can be activated. Isoquinoline
alkaloids are synthesized via decarboxylation of tyrosine
or DOPA (dihydroxyphenylalanine) to yield dopamine and

®
‘ Rs
R4

NH-Me) or a quaternary amine (loss of N(CHj3),). Quaternary amines
have an additional signature ion at m/z 58 corresponding to the
(CH;), N*=CH, fragment formed by retro Diels—Alder fragmenta-
tion. Ion a on the other hand determines the substitution pattern on
the benzyl side chain. For example, the m/z 107 indicates p-OH sub-
stituent, while m/z 121 indicates p-OMe substituent. The structural
arguments used to annotate a specific BIA are shown in Table 1

4-hydroxyphenylacetaldehyde, which are then metabolized
to reticuline, an important precursor of various BIAs. Sub-
stitution of the heterocycle isoquinoline at the C1 position
by a benzyl group provides 1-benzylisoquinoline (Kanehisa
and Goto 2000).

Though the pathway seems to have originated early on in
the evolution of angiosperms, BIA production is only active
in certain plant groups and is deactivated in others. However,
this is the first time these compounds have been reported in
Tetrastigma, and in the grape family, Vitaceae. As far as we
know, no study has found BIA in the model species, Vitis
vinifera L., the common grape, which has been extensively
characterized chemically (Pezzuto 2008; Pinu et al. 2018).
However, enzymes involved in the initial steps of the path-
way, prior to reticuline, are present in Vitis (Kanehisa and
Goto 2000).

BIAs identified in non-infected 7. loheri include reticu-
line, norarmepavine, magnocurarine, magnoflorine, and a
few unknown BIAs (Table 1). In the BIA pathway, (S)-reti-
culine is the most common precursor for most BIAs formed
from the methylation of methylcoclaurine. It is unclear how
the other alkaloids are sequentially produced. Magnoflorine,
magnocurarine have been identified in Magnolia officinalis
Rehder & E.H.Wilson (Poivre and Duez 2017). Armepavine,
the methylated form of norarmepavine, on the other hand, is
a major bioactive compound of Nelumbo nucifera Gaertn.
and has been tested as a potential therapeutic agent for the
treatment of a kidney disorder (Ka et al. 2010).
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Ironically, much more is known about the pharmacology
of the BIAs (Singla et al. 2010), and there is little interest
in their ecophysiological roles, which could provide insight
as to why uninfected T. loheri may be producing these.
BIAs generally do not appear essential for plant growth and
development, but they play a key role in the plant defense
against herbivores and pathogens (Hagel et al. 2013). Thus,
in Tetrastigma loheri, these chemical adaptations may
have evolved to fight off an infection including Rafflesia.
In Genista anthoclada (Fabaceae) and its holoparasite Cus-
cuta palaestina (Convolvulaceae) several quinolizidine
alkaloids were detected, with the alkaloids assumed to be
exploited by Cuscuta for its own antiherbivore protection
(Wink and Witte 1993). In addition to BIAs, the lignan,
secoisolariciresinol, was also elevated in uninfected shoots.
Lignans have potent antimicrobial and insecticidal proper-
ties and may have important roles in plant defense (Saleem
et al. 2005).

Pennings and Callaway (2002) likened plant parasites
to herbivores, as consumers with host preferences, but
unlike animal herbivores, plant parasites are immobile and
intimate with the host, and are thus more affected by host
physiology and host biochemistry. Cuscuta seemed to have
evolved to resist the toxic effects of the quinolizidine alka-
loids and appropriate them for its own defense (Wink and
Witte 1993), which does not seem to be the case in Rafflesia
given that BIAs were found to be lacking in infected shoots.
Nonetheless, it is also possible that unidentified microbial
endophytes are producing the metabolites identified in Zet-
rastigma, as has been observed in opium poppy and in other
plants (Ray et al. 2019).

Alternatively, Rafflesia could be suppressing the produc-
tion of BIA in infected shoots. In terms of its application for
ex situ propagation, 7. loheri shoots with minimal BIA con-
tent may be more effective in supporting a Rafflesia infection
and should be considered when grafting Rafflesia-infected
shoots and when inoculating Rafflesia seeds.

Metabolites elevated in Rafflesia-infected
Tetrastigma loheri

In Rafflesia-infected Tetrastigma shoots, there were eight
metabolites that were found to be significantly elevated
based on our XCMS settings. Noteworthy compounds
include tryptamine, a phthalide (possibly cnidilide/neoc-
nidilide) and various kinds of polyunsaturated fatty acids
(PUFA) and the polyphenol quercetin-3-(2 g-xylosylrutino-
side). The identification confidence for these are at level 3
(except tryptamine at 2a), meaning that the compound class
(e.g. oxygenated fatty acids) is known, though the exact ID/
structure is unknown (Table 2) and have yet to be elucidated.

In the tryptamine pathway, the amino acid tryptophan is
metabolized to tryptamine then ultimately to indole acetic

@ Springer

acid, a bioactive auxin (Quittenden et al. 2009). Auxin
signaling was found to be important in promoting xylem
bridge formation between the Orobanchaceae hemipara-
site Ptheroispermum japonicum and its host (Wakatake
et al. 2020), and we speculate that the elevated trytamine
would increase auxin that may forge vascular connections
between Rafflesia and its host. Desoxypeganine was also
found elevated in infected shoots but its ecological role
is unknown, though it is pharmacologically characterized
as a cholinesterase inhibitor (Algorta et al. 2008). The
phthalide cnidilide (or neocnidilide) has been isolated as a
flavor constituent in celery oil (MacLeod and Ames 1989).
Interestingly, it is structurally related to seed-germination
stimulants, strigol and karrikinolide (Renzetti and Fuku-
moto 2019), possessing a butenolide ring that may be bio-
logically relevant (Fischer et al. 1989). Stearidonic acid
is a PUFA naturally found in the seed oils of hemp and
flaxseed (Bakowska-Barczak et al. 2020). Stearidonic
acid (SDA) is derived from alpha-linolenic acid by a spe-
cialized enzyme, delta-6 desaturase, not present in many
plants (Ruiz-Lépez et al. 2009). SDA is also important in
human nutrition because it is an intermediate in the bio-
synthesis of eicosapentanoic acid (EPA) and docosahexae-
noic (DHA) acids (Whelan et al. 2009). However, such as
BIAs, its precise ecophysiological role is unclear, except
that it is an intermediate product in the lipid pathways
in some plants (Sreedhar et al. 2017). It is interesting to
note, however, in the model nematode, Caenorhabditis
elegans, its inability to produce gamma-linolenic acid
and SDA due to loss-of-function mutation in the enzyme
delta-6 desaturase led to increased pathogen susceptibility
(Nandakumar and Tan 2008). Thus, the release of SDA in
Rafflesia-infected T. loheri may be an immune response.
The PUFA hydroxy linolenic acid and 13(S)-HOT
(9Z,11E,157)-(13S)-13-hydroxyoctadeca-9,11,15-trienoic
acid) were also substantially increased in Rafflesia-infected
shoots. These are types of oxygenated fatty acids, collec-
tively termed ‘oxylipins’, which are involved in the immune
response of plants (Genva et al. 2019). The plant hormone
and oxylipin, jasmonate, is present ubiquitously in land
plants playing a role in defensive responses (Griffiths et al.
2015). Like SDA, jasmonates are formed from linolenic
acid in plant chloroplasts. Some oxylipins are distasteful to
insect predators, and others can elicit a signal of cell damage
throughout the plant to coordinate a comprehensive response
(Gessler et al. 2017). Linolenic and linoleic acid production
was also found to increase in tomato plants parasitized by
the parasitic plant, Cuscuta pentagona Engelm., similar to
the chemical response tomato plants display when attacked
by herbivores or pathogens (Runyon et al. 2010). Fatty acid
hydroperoxides (possibly 8E,10S,12Z)-10-hydroperoxy-
octadeca-8,12-dienoate and (9Z,11E)-(13S)-13-hydroper-
oxyoctadeca-9,11-dienoic acid), which serve as important
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intermediates in the oxylipin pathway (Hamberg et al. 1999),
were also detected.

Another type of oxylipin detected in Rafflesia-infected
shoots was a divinyl ether fatty acid (possibly 12-OPDA or
etherolenic acid), which is similarly derived from alpha-
linolenic acid from the action of plant lipoxygenases
(Fammartino et al. 2007; Vincenti et al. 2019). Though
the physiological importance of divinyl ether fatty acids
is not fully understood, it was observed that levels of this
metabolite increased in infected potato leaves suggest-
ing a possible role in defense response. Based on studies
conducted with other plants, it is possible these oxylipins
are released by T. loheri as a defense mechanism dur-
ing Rafflesia infection. Thus, suppression of oxylipins in
Rafflesia-infected Tetrastigma shoots may be beneficial in
facilitating Rafflesia propagation.

Phenolics such as flavonoids and tannins have been
demonstrated to be involved in plant defense against plant
parasites (Lozano-Baena et al. 2007; Furlan et al. 2019).
One flavonoid elevated in infected T. loheri was quercetin
3-(2 g-xylosyl rutinoside), but its ecological importance
is so far not understood, yet multiple studies extol its die-
tary benefits (Anand David et al. 2016; Salehi et al. 2020).
Piwowarczyk et al. (2020) detected abundant polyphenols,
such as quercetin derivatives in the host species of the holo-
parasite Cistanche armena (K. Koch) M.V. Agab (Oroban-
chaceae). In grapes, quercetin glycosides as well as other
flavonoids were associated with phytoplasma and mildew
infection (Bouderias et al. 2020). Whether these polyphenols
are involved in Tetrastigma immune reponse against its Raf-
flesia parasite remains to be seen.

Conclusion

In this study we provided a preliminary assessment of
metabolites significantly different between Rafflesia-para-
sitized and non-parasitized Tetrastigma loheri. The abun-
dance of benzylisoquinoline alkaloids (BIA) in non-infected
host shoots suggest this metabolite may represent a defense
strategy against Rafflesia infection, or that Rafflesia could
somehow repress BIA production in infected shoots, where
BIAs were shown to be lacking. The presence of BIA, a class
of medicinally important compounds, in Tetrastigma and in
its family Vitaceae, is here reported for the first time and
reflects the pharmacological potential of this genus. Secre-
tion of polyunsaturated fatty acids, of oxylipins, and poly-
phenols in Rafflesia-infected shoots, suggest that Rafflesia
elicits host immune response. Conceivably, suppression of
these immune-response compounds could facilitate Raffle-
sia infection and hence propagation. Further studies to test
the metabolites identified here are the logical next steps to

develop propagation strategies that could prove integral for
preservation of this “panda of the plant world.”
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